NTPsec

A-ntpsec-3-hour-stats

Report generated: Wed Jan 28 07:04:29 2026 UTC
Start Time: Wed Jan 28 04:04:29 2026 UTC
End Time: Wed Jan 28 07:04:29 2026 UTC
Report published: Tue Jan 27 11:04:50 PM 2026 PST
Report Period: 0.1 days

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -2.992 -2.021 -1.158 0.025 0.930 1.335 2.013 2.088 3.356 0.640 -0.022 µs -4.975 15.65
Local Clock Frequency Offset -240.952 -239.868 -238.403 -232.758 -229.385 -226.593 -225.571 9.018 13.275 2.490 -233.053 ppb -8.468e+05 8.013e+07

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.379 0.436 0.508 0.804 1.263 1.472 1.812 0.755 1.036 0.232 0.830 µs 25.48 94.57

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 134.000 162.000 190.000 293.000 447.000 529.000 601.000 257.000 367.000 80.088 302.262 10e-12 30.35 116.4

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -2.992 -2.021 -1.158 0.025 0.930 1.335 2.013 2.088 3.356 0.640 -0.022 µs -4.975 15.65

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset -240.952 -239.868 -238.403 -232.758 -229.385 -226.593 -225.571 9.018 13.275 2.490 -233.053 ppb -8.468e+05 8.013e+07
Temp ZONE0 46.160 46.160 46.698 47.236 47.236 47.774 47.774 0.538 1.614 0.245 47.145 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 8.000 8.000 8.000 9.000 12.000 12.000 12.000 4.000 4.000 1.121 9.397 nSat 425.7 3329
TDOP 0.520 0.520 0.520 0.800 1.210 1.270 1.280 0.690 0.750 0.201 0.861 45.44 186.3

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 157.131.224.9

peer offset 157.131.224.9 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 157.131.224.9 1.934 1.934 2.056 2.375 2.704 2.801 2.801 0.648 0.867 0.204 2.400 ms 1280 1.413e+04

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 173.11.101.155

peer offset 173.11.101.155 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 173.11.101.155 -3.106 -3.106 -3.094 -0.443 3.528 3.840 3.840 6.622 6.946 1.781 -0.462 ms -5.299 12.26

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 192.12.19.20

peer offset 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 192.12.19.20 1.154 1.154 1.303 2.818 3.407 5.032 5.032 2.104 3.878 0.718 2.674 ms 29.06 112.1

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.182 2.182 2.238 2.623 3.000 3.138 3.138 0.762 0.956 0.219 2.580 ms 1291 1.43e+04

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2607:5300:205:200::4ece (zero.txryan.com)

peer offset 2607:5300:205:200::4ece plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2607:5300:205:200::4ece (zero.txryan.com) -0.119 -0.119 1.209 2.084 2.621 2.969 2.969 1.412 3.089 0.493 1.981 ms 34.54 123.3

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu)

peer offset 2607:f140:ffff:8000:0:8006:0:a plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.209 1.209 1.350 2.621 3.265 4.774 4.774 1.915 3.565 0.582 2.595 ms 52.49 232.3

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 50.116.42.84

peer offset 50.116.42.84 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 50.116.42.84 1.706 1.706 2.135 2.615 4.268 4.688 4.688 2.134 2.983 0.522 2.697 ms 86.73 447

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 52.10.183.132

peer offset 52.10.183.132 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 52.10.183.132 0.579 0.579 0.915 2.070 4.475 4.892 4.892 3.560 4.314 0.838 2.215 ms 10.83 38.75

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 66.220.9.122

peer offset 66.220.9.122 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 66.220.9.122 2.388 2.388 2.611 3.285 3.808 4.000 4.000 1.197 1.613 0.353 3.310 ms 610.9 5314

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -99.585 -99.551 -99.288 -96.078 -94.399 -93.726 -93.717 4.889 5.825 1.507 -96.436 ms -2.746e+05 1.786e+07

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(1)

peer offset SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(1) -2.993 -2.022 -1.159 0.026 0.931 1.336 2.014 2.090 3.358 0.641 -0.022 µs -4.973 15.63

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 157.131.224.9

peer jitter 157.131.224.9 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 157.131.224.9 0.504 0.504 0.763 1.880 3.535 4.853 4.853 2.773 4.349 0.951 2.114 ms 6.079 17.25

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 173.11.101.155

peer jitter 173.11.101.155 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 173.11.101.155 1.428 1.428 1.881 3.165 5.285 13.007 13.007 3.404 11.579 1.756 3.618 ms 8.216 45.42

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 192.12.19.20

peer jitter 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 192.12.19.20 0.844 0.844 0.887 2.355 4.278 4.489 4.489 3.391 3.645 1.057 2.419 ms 6.397 16.82

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.529 0.529 0.625 2.437 6.042 6.181 6.181 5.417 5.653 1.334 2.477 ms 4.246 12.59

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2607:5300:205:200::4ece (zero.txryan.com)

peer jitter 2607:5300:205:200::4ece plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2607:5300:205:200::4ece (zero.txryan.com) 1.287 1.287 1.524 2.746 6.432 6.608 6.608 4.908 5.321 1.473 2.965 ms 5.33 15.91

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu)

peer jitter 2607:f140:ffff:8000:0:8006:0:a plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.095 1.095 1.315 2.222 10.942 11.168 11.168 9.628 10.074 2.143 2.889 ms 4.05 16.39

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 50.116.42.84

peer jitter 50.116.42.84 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 50.116.42.84 0.572 0.572 0.939 2.591 4.221 6.660 6.660 3.283 6.088 1.068 2.516 ms 7.867 28.75

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 52.10.183.132

peer jitter 52.10.183.132 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 52.10.183.132 1.057 1.057 1.151 2.120 9.331 9.487 9.487 8.179 8.430 2.547 3.367 ms 2.38 5.931

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 66.220.9.122

peer jitter 66.220.9.122 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 66.220.9.122 0.831 0.831 0.978 1.960 4.805 6.539 6.539 3.827 5.707 1.141 2.257 ms 5.873 22.03

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.166 0.196 0.226 0.587 1.243 1.504 1.877 1.017 1.309 0.315 0.640 ms 5.168 15.45

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(1)

peer jitter SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(1) 0.144 0.271 0.364 0.734 1.614 2.179 3.232 1.250 1.908 0.405 0.830 µs 5.865 21.19

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset -240.952 -239.868 -238.403 -232.758 -229.385 -226.593 -225.571 9.018 13.275 2.490 -233.053 ppb -8.468e+05 8.013e+07
Local Clock Time Offset -2.992 -2.021 -1.158 0.025 0.930 1.335 2.013 2.088 3.356 0.640 -0.022 µs -4.975 15.65
Local RMS Frequency Jitter 134.000 162.000 190.000 293.000 447.000 529.000 601.000 257.000 367.000 80.088 302.262 10e-12 30.35 116.4
Local RMS Time Jitter 0.379 0.436 0.508 0.804 1.263 1.472 1.812 0.755 1.036 0.232 0.830 µs 25.48 94.57
Server Jitter 157.131.224.9 0.504 0.504 0.763 1.880 3.535 4.853 4.853 2.773 4.349 0.951 2.114 ms 6.079 17.25
Server Jitter 173.11.101.155 1.428 1.428 1.881 3.165 5.285 13.007 13.007 3.404 11.579 1.756 3.618 ms 8.216 45.42
Server Jitter 192.12.19.20 0.844 0.844 0.887 2.355 4.278 4.489 4.489 3.391 3.645 1.057 2.419 ms 6.397 16.82
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.529 0.529 0.625 2.437 6.042 6.181 6.181 5.417 5.653 1.334 2.477 ms 4.246 12.59
Server Jitter 2607:5300:205:200::4ece (zero.txryan.com) 1.287 1.287 1.524 2.746 6.432 6.608 6.608 4.908 5.321 1.473 2.965 ms 5.33 15.91
Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.095 1.095 1.315 2.222 10.942 11.168 11.168 9.628 10.074 2.143 2.889 ms 4.05 16.39
Server Jitter 50.116.42.84 0.572 0.572 0.939 2.591 4.221 6.660 6.660 3.283 6.088 1.068 2.516 ms 7.867 28.75
Server Jitter 52.10.183.132 1.057 1.057 1.151 2.120 9.331 9.487 9.487 8.179 8.430 2.547 3.367 ms 2.38 5.931
Server Jitter 66.220.9.122 0.831 0.831 0.978 1.960 4.805 6.539 6.539 3.827 5.707 1.141 2.257 ms 5.873 22.03
Server Jitter SHM(0) 0.166 0.196 0.226 0.587 1.243 1.504 1.877 1.017 1.309 0.315 0.640 ms 5.168 15.45
Server Jitter SHM(1) 0.144 0.271 0.364 0.734 1.614 2.179 3.232 1.250 1.908 0.405 0.830 µs 5.865 21.19
Server Offset 157.131.224.9 1.934 1.934 2.056 2.375 2.704 2.801 2.801 0.648 0.867 0.204 2.400 ms 1280 1.413e+04
Server Offset 173.11.101.155 -3.106 -3.106 -3.094 -0.443 3.528 3.840 3.840 6.622 6.946 1.781 -0.462 ms -5.299 12.26
Server Offset 192.12.19.20 1.154 1.154 1.303 2.818 3.407 5.032 5.032 2.104 3.878 0.718 2.674 ms 29.06 112.1
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.182 2.182 2.238 2.623 3.000 3.138 3.138 0.762 0.956 0.219 2.580 ms 1291 1.43e+04
Server Offset 2607:5300:205:200::4ece (zero.txryan.com) -0.119 -0.119 1.209 2.084 2.621 2.969 2.969 1.412 3.089 0.493 1.981 ms 34.54 123.3
Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.209 1.209 1.350 2.621 3.265 4.774 4.774 1.915 3.565 0.582 2.595 ms 52.49 232.3
Server Offset 50.116.42.84 1.706 1.706 2.135 2.615 4.268 4.688 4.688 2.134 2.983 0.522 2.697 ms 86.73 447
Server Offset 52.10.183.132 0.579 0.579 0.915 2.070 4.475 4.892 4.892 3.560 4.314 0.838 2.215 ms 10.83 38.75
Server Offset 66.220.9.122 2.388 2.388 2.611 3.285 3.808 4.000 4.000 1.197 1.613 0.353 3.310 ms 610.9 5314
Server Offset SHM(0) -99.585 -99.551 -99.288 -96.078 -94.399 -93.726 -93.717 4.889 5.825 1.507 -96.436 ms -2.746e+05 1.786e+07
Server Offset SHM(1) -2.993 -2.022 -1.159 0.026 0.931 1.336 2.014 2.090 3.358 0.641 -0.022 µs -4.973 15.63
TDOP 0.520 0.520 0.520 0.800 1.210 1.270 1.280 0.690 0.750 0.201 0.861 45.44 186.3
Temp ZONE0 46.160 46.160 46.698 47.236 47.236 47.774 47.774 0.538 1.614 0.245 47.145 °C
nSats 8.000 8.000 8.000 9.000 12.000 12.000 12.000 4.000 4.000 1.121 9.397 nSat 425.7 3329
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!