NTPsec

A-ntpsec-72-hour-stats

Report generated: Mon Feb 9 22:09:58 2026 UTC
Start Time: Fri Feb 6 22:09:57 2026 UTC
End Time: Mon Feb 9 22:09:57 2026 UTC
Report published: Mon Feb 09 02:10:23 PM 2026 PST
Report Period: 3.0 days

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -5.573 -2.296 -1.332 0.067 1.006 1.444 6.060 2.338 3.740 0.712 -0.001 µs -4.774 15.74
Local Clock Frequency Offset -386.414 -382.675 -375.122 -243.576 -149.963 -141.281 -138.367 225.159 241.394 74.126 -251.438 ppb -98.11 493.2

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.250 0.402 0.494 0.856 1.431 1.694 3.145 0.937 1.292 0.295 0.896 µs 15.39 53.22

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 112.000 154.000 185.000 315.000 519.000 606.000 2,047.000 334.000 452.000 110.249 330.308 10e-12 15.8 73.9

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -5.573 -2.296 -1.332 0.067 1.006 1.444 6.060 2.338 3.740 0.712 -0.001 µs -4.774 15.74

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset -386.414 -382.675 -375.122 -243.576 -149.963 -141.281 -138.367 225.159 241.394 74.126 -251.438 ppb -98.11 493.2
Temp ZONE0 45.084 45.084 45.084 46.698 47.774 48.312 48.312 2.690 3.228 0.843 46.673 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 7.000 8.000 8.000 10.000 12.000 12.000 12.000 4.000 4.000 1.116 9.790 nSat 493 4023
TDOP 0.490 0.520 0.560 0.790 1.180 1.460 1.830 0.620 0.940 0.198 0.831 43.53 182.7

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 157.131.224.9

peer offset 157.131.224.9 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 157.131.224.9 0.235 1.865 2.489 3.140 4.209 4.938 6.440 1.720 3.073 0.643 3.330 ms 85.56 415.9

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 173.11.101.155

peer offset 173.11.101.155 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 173.11.101.155 -5.705 -4.419 -3.219 -0.631 2.445 3.813 6.635 5.664 8.232 1.791 -0.579 ms -6.009 15.12

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 192.12.19.20

peer offset 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 192.12.19.20 -0.261 0.925 1.782 2.970 4.593 5.024 5.293 2.811 4.099 0.894 3.157 ms 23.71 81.42

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 0.798 0.903 1.730 2.498 3.724 4.632 5.519 1.994 3.729 0.671 2.641 ms 34.79 138.8

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -1.562 1.298 1.962 3.285 3.868 4.484 4.853 1.905 3.185 0.685 3.060 ms 51.06 209

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2607:5300:205:200::4ece (zero.txryan.com)

peer offset 2607:5300:205:200::4ece plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2607:5300:205:200::4ece (zero.txryan.com) 0.587 1.573 2.215 2.941 4.156 4.846 5.159 1.941 3.273 0.680 3.116 ms 56.79 246.6

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu)

peer offset 2607:f140:ffff:8000:0:8006:0:a plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.187 1.752 2.224 2.863 3.872 4.553 5.376 1.648 2.801 0.596 3.050 ms 82.66 398.4

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 50.116.42.84

peer offset 50.116.42.84 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 50.116.42.84 0.383 1.673 2.358 3.725 4.648 6.055 7.588 2.290 4.382 0.753 3.692 ms 71.25 332.2

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 52.10.183.132

peer offset 52.10.183.132 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 52.10.183.132 -0.320 1.183 1.575 2.494 3.499 4.399 4.772 1.924 3.217 0.649 2.513 ms 32.44 122.7

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 66.220.9.122

peer offset 66.220.9.122 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 66.220.9.122 -0.141 0.818 1.585 2.708 4.113 4.609 5.682 2.528 3.791 0.795 2.817 ms 24.04 83.78

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -102.579 -101.661 -100.322 -97.082 -95.095 -94.333 -93.374 5.228 7.328 1.599 -97.330 ms -2.368e+05 1.466e+07

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(1)

peer offset SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(1) -5.574 -2.297 -1.333 0.068 1.007 1.445 6.061 2.340 3.742 0.713 -0.001 µs -4.772 15.72

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 157.131.224.9

peer jitter 157.131.224.9 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 157.131.224.9 0.167 0.386 0.644 1.602 3.588 6.567 16.082 2.944 6.181 1.250 1.835 ms 6.101 52.15

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 173.11.101.155

peer jitter 173.11.101.155 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 173.11.101.155 0.793 1.258 1.673 3.112 6.431 9.042 10.970 4.758 7.784 1.572 3.499 ms 6.987 24.47

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 192.12.19.20

peer jitter 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 192.12.19.20 0.166 0.277 0.541 1.565 3.820 7.495 19.558 3.280 7.217 1.617 1.884 ms 6.181 55.35

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.276 0.334 0.688 1.971 4.288 10.212 15.565 3.600 9.877 1.727 2.199 ms 5.464 37.78

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.247 0.405 0.701 1.779 5.040 11.042 13.436 4.339 10.637 1.681 2.128 ms 4.455 24.96

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2607:5300:205:200::4ece (zero.txryan.com)

peer jitter 2607:5300:205:200::4ece plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2607:5300:205:200::4ece (zero.txryan.com) 0.113 0.406 0.743 1.709 3.958 14.029 26.611 3.215 13.623 2.002 2.114 ms 6.625 63.29

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu)

peer jitter 2607:f140:ffff:8000:0:8006:0:a plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 0.320 0.529 0.765 1.718 3.968 9.165 15.146 3.202 8.635 1.397 2.003 ms 5.502 37.69

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 50.116.42.84

peer jitter 50.116.42.84 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 50.116.42.84 0.225 0.362 0.670 1.600 3.936 10.004 36.848 3.266 9.641 2.294 2.014 ms 9.312 126

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 52.10.183.132

peer jitter 52.10.183.132 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 52.10.183.132 0.181 0.311 0.580 1.563 3.581 6.057 25.101 3.001 5.746 1.513 1.825 ms 9.575 138.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 66.220.9.122

peer jitter 66.220.9.122 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 66.220.9.122 0.200 0.343 0.626 1.594 3.879 8.340 47.812 3.253 7.997 2.752 2.014 ms 10.23 140.1

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.103 0.206 0.268 0.549 1.263 1.676 2.265 0.995 1.470 0.312 0.625 ms 5.477 18.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(1)

peer jitter SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(1) 0.080 0.252 0.350 0.788 1.828 2.555 5.933 1.478 2.303 0.480 0.898 µs 4.846 17.76

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset -386.414 -382.675 -375.122 -243.576 -149.963 -141.281 -138.367 225.159 241.394 74.126 -251.438 ppb -98.11 493.2
Local Clock Time Offset -5.573 -2.296 -1.332 0.067 1.006 1.444 6.060 2.338 3.740 0.712 -0.001 µs -4.774 15.74
Local RMS Frequency Jitter 112.000 154.000 185.000 315.000 519.000 606.000 2,047.000 334.000 452.000 110.249 330.308 10e-12 15.8 73.9
Local RMS Time Jitter 0.250 0.402 0.494 0.856 1.431 1.694 3.145 0.937 1.292 0.295 0.896 µs 15.39 53.22
Server Jitter 157.131.224.9 0.167 0.386 0.644 1.602 3.588 6.567 16.082 2.944 6.181 1.250 1.835 ms 6.101 52.15
Server Jitter 173.11.101.155 0.793 1.258 1.673 3.112 6.431 9.042 10.970 4.758 7.784 1.572 3.499 ms 6.987 24.47
Server Jitter 192.12.19.20 0.166 0.277 0.541 1.565 3.820 7.495 19.558 3.280 7.217 1.617 1.884 ms 6.181 55.35
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.276 0.334 0.688 1.971 4.288 10.212 15.565 3.600 9.877 1.727 2.199 ms 5.464 37.78
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.247 0.405 0.701 1.779 5.040 11.042 13.436 4.339 10.637 1.681 2.128 ms 4.455 24.96
Server Jitter 2607:5300:205:200::4ece (zero.txryan.com) 0.113 0.406 0.743 1.709 3.958 14.029 26.611 3.215 13.623 2.002 2.114 ms 6.625 63.29
Server Jitter 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 0.320 0.529 0.765 1.718 3.968 9.165 15.146 3.202 8.635 1.397 2.003 ms 5.502 37.69
Server Jitter 50.116.42.84 0.225 0.362 0.670 1.600 3.936 10.004 36.848 3.266 9.641 2.294 2.014 ms 9.312 126
Server Jitter 52.10.183.132 0.181 0.311 0.580 1.563 3.581 6.057 25.101 3.001 5.746 1.513 1.825 ms 9.575 138.6
Server Jitter 66.220.9.122 0.200 0.343 0.626 1.594 3.879 8.340 47.812 3.253 7.997 2.752 2.014 ms 10.23 140.1
Server Jitter SHM(0) 0.103 0.206 0.268 0.549 1.263 1.676 2.265 0.995 1.470 0.312 0.625 ms 5.477 18.6
Server Jitter SHM(1) 0.080 0.252 0.350 0.788 1.828 2.555 5.933 1.478 2.303 0.480 0.898 µs 4.846 17.76
Server Offset 157.131.224.9 0.235 1.865 2.489 3.140 4.209 4.938 6.440 1.720 3.073 0.643 3.330 ms 85.56 415.9
Server Offset 173.11.101.155 -5.705 -4.419 -3.219 -0.631 2.445 3.813 6.635 5.664 8.232 1.791 -0.579 ms -6.009 15.12
Server Offset 192.12.19.20 -0.261 0.925 1.782 2.970 4.593 5.024 5.293 2.811 4.099 0.894 3.157 ms 23.71 81.42
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 0.798 0.903 1.730 2.498 3.724 4.632 5.519 1.994 3.729 0.671 2.641 ms 34.79 138.8
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -1.562 1.298 1.962 3.285 3.868 4.484 4.853 1.905 3.185 0.685 3.060 ms 51.06 209
Server Offset 2607:5300:205:200::4ece (zero.txryan.com) 0.587 1.573 2.215 2.941 4.156 4.846 5.159 1.941 3.273 0.680 3.116 ms 56.79 246.6
Server Offset 2607:f140:ffff:8000:0:8006:0:a (ntp1.net.berkeley.edu) 1.187 1.752 2.224 2.863 3.872 4.553 5.376 1.648 2.801 0.596 3.050 ms 82.66 398.4
Server Offset 50.116.42.84 0.383 1.673 2.358 3.725 4.648 6.055 7.588 2.290 4.382 0.753 3.692 ms 71.25 332.2
Server Offset 52.10.183.132 -0.320 1.183 1.575 2.494 3.499 4.399 4.772 1.924 3.217 0.649 2.513 ms 32.44 122.7
Server Offset 66.220.9.122 -0.141 0.818 1.585 2.708 4.113 4.609 5.682 2.528 3.791 0.795 2.817 ms 24.04 83.78
Server Offset SHM(0) -102.579 -101.661 -100.322 -97.082 -95.095 -94.333 -93.374 5.228 7.328 1.599 -97.330 ms -2.368e+05 1.466e+07
Server Offset SHM(1) -5.574 -2.297 -1.333 0.068 1.007 1.445 6.061 2.340 3.742 0.713 -0.001 µs -4.772 15.72
TDOP 0.490 0.520 0.560 0.790 1.180 1.460 1.830 0.620 0.940 0.198 0.831 43.53 182.7
Temp ZONE0 45.084 45.084 45.084 46.698 47.774 48.312 48.312 2.690 3.228 0.843 46.673 °C
nSats 7.000 8.000 8.000 10.000 12.000 12.000 12.000 4.000 4.000 1.116 9.790 nSat 493 4023
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!